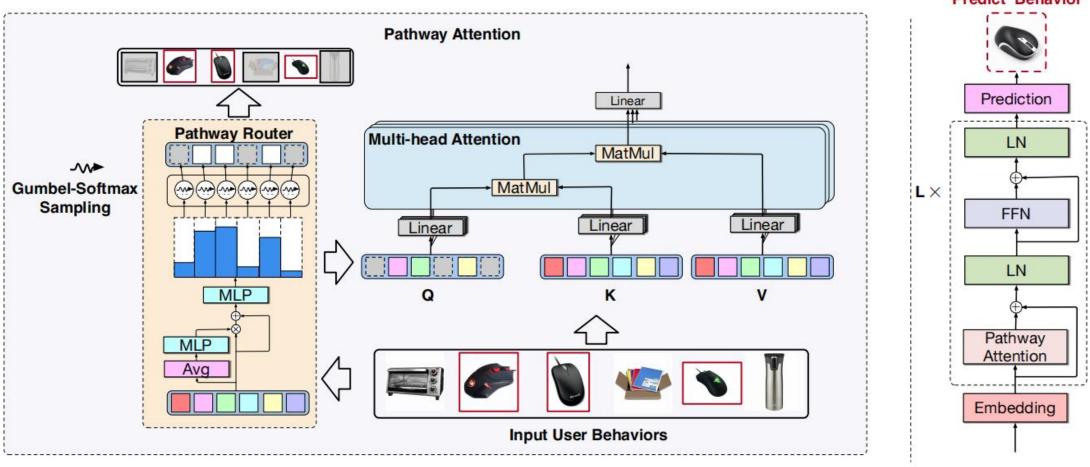
Recommender Transformers with Behavior Pathways

Zhiyu Yao, Xinyang Chen, Sinan Wang, Qinyan Dai, Yumeng Li, Tanchao Zhu, Mingsheng Long (⋈)
School of Software, BNRist, Tsinghua University, China Alibaba Group, China
Industrial Engineering, Tsinghua University

{yaozy19, chenxiny17, dai-qy18}@mails.tsinghua.edu.cn
mingsheng@mails.tsinghua.edu.cn

code:none

WWW 2024


Introduction

In sequential recommendation, we find that only a small part of pivotal behaviors can be evolved into the use's future action. And we conclude this characteristics of sequential behaviors as the Behavior Pathway.

Figure 1: Three main characteristics of the behavior pathway for different users, making sequential recommendation extremely hard. The behavior pathway is outlined by the red boxes.

Method

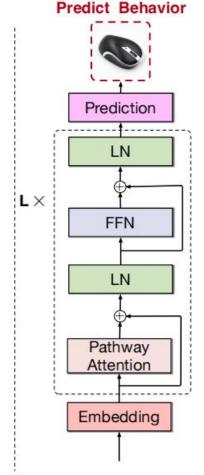
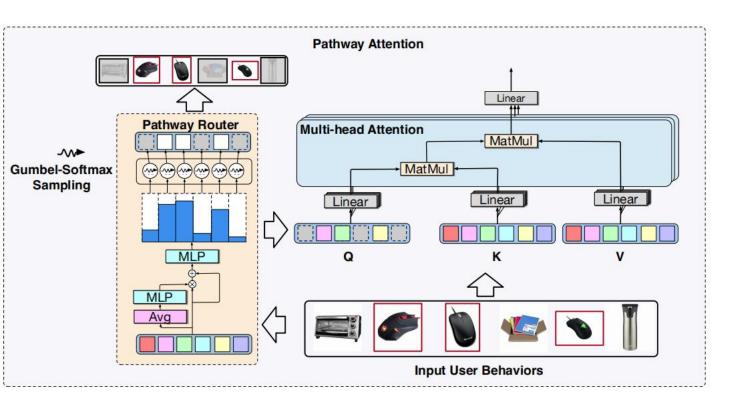
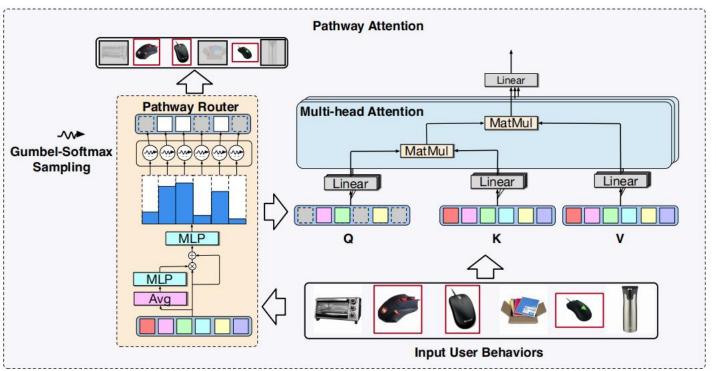



Figure 2: Recommender Transformer architecture (right). Pathway Attention (left) explores the behavior pathway by the pathway router (orange module) and captures the evolving sequential characteristics by the multi-head attention.

Method


$$egin{aligned} \widehat{\mathcal{Z}}^l, \mathcal{R}^l &= ext{Path-MSA} \ (\mathcal{Z}^{l-1}, \mathcal{R}^{l-1}) \ \widehat{\mathcal{Z}}^l &= ext{LN} \ (\widehat{\mathcal{Z}}^l + \mathcal{Z}^{l-1}) \ \mathcal{Z}^l &= ext{LN} \ (ext{FFN} \ (\widehat{\mathcal{Z}}^l) + \widehat{\mathcal{Z}}^l), \end{aligned}$$

$$\mathcal{Z}_{\text{emb}}^{l} = \mathcal{Z}^{l-1} + \mathcal{Z}^{l-1} \odot \text{MLP}\left(\frac{\sum_{i=1}^{N} \mathcal{R}_{i}^{l-1} \mathcal{Z}_{i}^{l-1}}{\sum_{i=1}^{N} \mathcal{R}_{i}^{l-1}}\right)$$

$$\boldsymbol{\pi} = \text{Softmax}\left(\text{MLP}(\mathcal{Z}_{\text{emb}}^{l})\right) \in \mathbb{R}^{N \times 2},$$
(2)

$$\widehat{\mathcal{R}}_t^l = \underset{j \in \{0,1\}}{\operatorname{arg\,max}} \left(\log \pi_t(j) + G_t(j) \right), \qquad (3)$$

Method

$$v_t(j) = \frac{\exp((\log \pi_t(j) + G_t(j))/\tau)}{\sum_{i \in \{0,1\}} \exp((\log \pi_t(i) + G_t(i))/\tau)}, j \in \{0,1\},$$
(4)

$$\mathcal{R}^l = \widehat{\mathcal{R}}^l \odot \mathcal{R}^{l-1}. \tag{5}$$

$$Q_{m}, \mathcal{K}_{m}, \mathcal{V}_{m} = (\mathcal{Z}^{l-1} \odot \mathcal{R}^{l}) W_{Q_{m}}^{l}, \mathcal{Z}^{l-1} W_{\mathcal{K}_{m}}^{l}, \mathcal{Z}^{l-1} W_{\mathcal{V}_{m}}^{l}$$

$$\widehat{\mathcal{Z}}_{m}^{l} = \operatorname{Softmax} \left(\frac{Q_{m} \mathcal{K}_{m}^{T}}{\sqrt{d/h}} \right) \mathcal{V}_{m}^{l}, \tag{6}$$

$$\mathcal{L} = -\sum_{u \in \mathcal{U}} \sum_{t=1}^{n} \log \sigma(p(i_{t+1} \mid i_{1:t}) - p(i_{t+1}^- \mid i_{1:t})), \quad (7)$$

Table 1: Statistics of the datasets.

Dataset	Users	Items	Actions
Beauty	22,363	12,101	19,8502
Sports	25,598	18,357	29,6337
Toys	19,412	11,924	16,7597
Yelp	30,431	20,033	31,6354
MovieLens-1M	6,040	3,416	1,000,000
Tmall	66,909	37,367	42,7797
Steam	334,730	13,047	3,700,000

Datasets	Meric	PopRec	Caser	GRU4Rec	BERT4Rec	SASRec	SASRec+	SMRec	RETR
Beauty	HR@10	0.3386	0.3942	0.4106	0.4739	0.4696	0.4798	0.4826	0.5034
	NDCG@10	0.1803	0.2512	0.2584	0.2975	0.3156	0.3261	0.3238	0.3425
	MRR	0.1558	0.2263	0.2308	0.2614	0.2852	0.2901	0.2918	0.3067
Sports	HR@10	0.3423	0.4014	0.4299	0.4722	0.4622	0.4776	0.4853	0.5083
	NDCG@10	0.1902	0.2390	0.2527	0.2775	0.2869	0.2987	0.3061	0.3175
	MRR	0.1660	0.2100	0.2191	0.2378	0.2520	0.2635	0.2665	0.2768
Toys	HR@10	0.3008	0.3540	0.3896	0.4493	0.4663	0.4729	0.4754	0.5104
	NDCG@10	0.1618	0.2183	0.2274	0.2698	0.3136	0.3183	0.3198	0.3395
	MRR	0.1430	0.1967	0.1973	0.2338	0.2842	0.2912	0.2910	0.3048
Yelp	HR@10	0.3609	0.6661	0.7265	0.7597	0.7373	0.7481	0.7548	0.7730
	NDCG@10	0.2007	0.4198	0.4375	0.4778	0.4642	0.4757	0.4789	0.5136
	MRR	0.1740	0.3595	0.3630	0.4026	0.3927	0.4011	0.4023	0.4354
-	HR@10	0.4329	0.7886	0.5581	0.8269	0.8233	0.8291	0.8302	0.8467
MovieLen	NDCG@10	0.2377	0.5538	0.3381	0.5965	0.5936	0.6057	0.6079	0.6351
	MRR	0.1891	0.5178	0.3002	0.5614	0.5573	0.5649	0.5703	0.5921
Tmall	HR@10	0.2967	0.5943	0.6432	0.6196	0.6275	0.6392	0.6476	0.7138
	NDCG@10	0.1874	0.4513	0.5169	0.5025	0.5049	0.5169	0.5192	0.6103
	MRR	0.1723	0.4209	0.4975	0.4026	0.4804	0.4912	0.4934	0.5822
-	HR@10	0.7172	0.7874	0.4190	0.8656	0.8729	0.8773	0.8792	0.9001
Steam	NDCG@10	0.4535	0.5381	0.2691	0.6283	0.6306	0.6397	0.6408	0.6795
	MRR	0.4102	0.5091	0.2402	0.5883	0.5925	0.6005	0.6011	0.6326

Table 3: Ablation study of (**Left**) the effectiveness of each model component and (**Right**) the number of blocks for each RETR block. Experiments are conducted on the Beauty Dataset.

Model	MRR	Model (# number of blocks)	MRR
RETR	0.3067	RETR $(L=1)$	0.2966
RETR w/o Pathway Router	0.2793	RETR $(L=2)$	0.3067
RETR w/o hierarchical update	0.2957	RETR $(L=3)$	0.3058
SASRec	0.2852	RETR $(L=4)$	0.3052

Table 4: Ablation study of (**Left**) the effectiveness of different temperatures; Comparison Parameters and GFLOPs (**Right**). All ablation study experiments are conducted on the Yelp Dataset.

Model (temperature)	MRR	Model	Parameters (M)	GFLOPs	MRR
RETR ($\tau = 0.4$)	0.4312	RETR	5.021	9.558	0.4354
RETR ($\tau = 0.8$)	0.4354	SASRec [16]	4.916	9.552	0.3927
RETR $(\tau = 1)$	0.4292	SASRec+ 35	5.133	9.942	0.4011
RETR $(\tau = 2)$	0.4183	SMRec [6]	5.173	9.864	0.4023

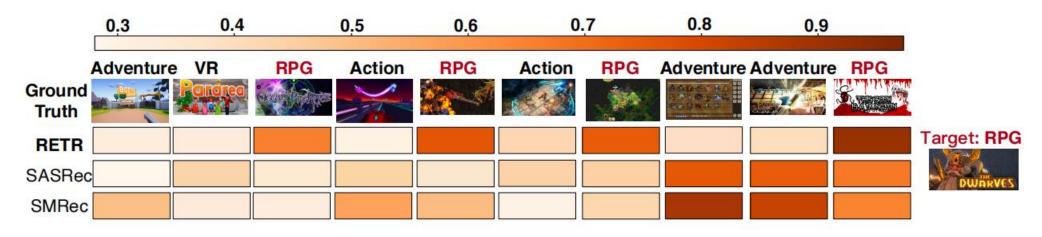


Figure 3: Illustration of how RETR, SASRec and SMRec differs on utilizing the historical behaviors of a random User in Steam Dataset. We provide the visualization of behavior heat maps for RETR, SASRec and SMRec of a random user in Steam dataset.

Thanks